In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom. So while the word symbol suggests otherwise, it represents an actual value of a physical quantity.
For a given electron configuration of an atom, its state depends also on its total angular momentum, including spin and orbital components, which are specified by the term symbol. The usual atomic term symbols assume LS coupling (also known as Russell–Saunders coupling) in which the all-electron total quantum numbers for orbital ( L), spin ( S) and total ( J) angular momenta are good quantum numbers.
In the terminology of atomic spectroscopy, L and S together specify a term; L, S, and J specify a level; and L, S, J and the magnetic quantum number M J specify a state. The conventional term symbol has the form 2 S+1 L J, where J is written optionally in order to specify a level. L is written using spectroscopic notation: for example, it is written "S", "P", "D", or "F" to represent L = 0, 1, 2, or 3 respectively. For coupling schemes other that LS coupling, such as the jj coupling that applies to some heavy elements, other notations are used to specify the term.
Term symbols apply to both neutral and charged atoms, and to their ground and excited states. Term symbols usually specify the total for all electrons in an atom, but are sometimes used to describe electrons in a given Electron shell or set of subshells, for example to describe each open subshell in an atom having more than one. The ground state term symbol for neutral atoms is described, in most cases, by Hund's rules. Neutral atoms of the chemical elements have the same term symbol for each column in the s-block and p-block elements, but differ in d-block and f-block elements where the ground-state electron configuration changes within a column, where exceptions to Hund's rules occur. Ground state term symbols for the chemical elements are given below.
Term symbols are also used to describe angular momentum quantum numbers for atomic nuclei and for molecules. For molecular term symbols, Greek letters are used to designate the component of orbital angular momenta along the molecular axis.
The use of the word term for an atom's electronic state is based on the Rydberg–Ritz combination principle, an empirical observation that the wavenumbers of spectral lines can be expressed as the difference of two terms. This was later summarized by the Bohr model, which identified the terms with quantized energy levels, and the spectral wavenumbers of these levels with photon energies.
Tables of atomic energy levels identified by their term symbols are available for atoms and ions in ground and excited states from the National Institute of Standards and Technology (NIST).
where
The orbital symbols S, P, D and F are derived from the characteristics of the spectroscopic lines corresponding to s, p, d, and f orbitals: sharp series, principal, diffuse series, and fundamental; the rest are named in alphabetical order from G onwards (omitting J, S and P). When used to describe electronic states of an atom, the term symbol is often written following the electron configuration. For example, 1s22s22p2 3P0 represents the ground state of a neutral carbon atom. The superscript 3 indicates that the spin multiplicity 2 S + 1 is 3 (it is a triplet state), so S = 1; the letter "P" is spectroscopic notation for L = 1; and the subscript 0 is the value of J (in this case J = L − S). NIST Atomic Spectrum Database For example, to display the levels for a neutral carbon atom, enter "C I" or "C 0" in the "Spectrum" box and click "Retrieve data".
Small letters refer to individual orbitals or one-electron quantum numbers, whereas capital letters refer to many-electron states or their quantum numbers.
The product as a number of possible states with given S and L is also a number of basis states in the uncoupled representation, where , , , ( and are z-axis components of total spin and total orbital angular momentum respectively) are good quantum numbers whose corresponding operators mutually commute. With given and , the eigenstates in this representation span function space of dimension , as and . In the coupled representation where total angular momentum (spin + orbital) is treated, the associated states (or eigenstates) are and these states span the function space with dimension of
as . Obviously, the dimension of function space in both representations must be the same.
As an example, for , there are different states (= eigenstates in the uncoupled representation) corresponding to the 3D term, of which belong to the 3D3 ( J = 3) level. The sum of for all levels in the same term equals (2 S+1)(2 L+1) as the dimensions of both representations must be equal as described above. In this case, J can be 1, 2, or 3, so 3 + 5 + 7 = 15.
where is the orbital quantum number for each electron. means even parity while is for odd parity. In fact, only electrons in odd orbitals (with odd) contribute to the total parity: an odd number of electrons in odd orbitals (those with an odd such as in p, f, ...) correspond to an odd term symbol, while an even number of electrons in odd orbitals correspond to an even term symbol. The number of electrons in even orbitals is irrelevant as any sum of even numbers is even. For any closed subshell, the number of electrons is which is even, so the summation of in closed subshells is always an even number. The summation of quantum numbers over open (unfilled) subshells of odd orbitals ( odd) determines the parity of the term symbol. If the number of electrons in this reduced summation is odd (even) then the parity is also odd (even).
When it is odd, the parity of the term symbol is indicated by a superscript letter "o", otherwise it is omitted:
Alternatively, parity may be indicated with a subscript letter "g" or "u", standing for gerade (German for "even") or ungerade ("odd"):
As an example, in the case of fluorine, the electronic configuration is 1s22s22p5.
Term symbols for the ground states of most chemical elements are given in the collapsed table below.For the sources for these term symbols in the case of the heaviest elements, see . In the d-block and f-block, the term symbols are not always the same for elements in the same column of the periodic table, because open shells of several d or f electrons have several closely spaced terms whose energy ordering is often perturbed by the addition of an extra complete shell to form the next element in the column.
For example, the table shows that the first pair of vertically adjacent atoms with different ground-state term symbols are V and Nb. The 6D ground state of Nb corresponds to an excited state of V 2112 cm−1 above the 4F ground state of V, which in turn corresponds to an excited state of Nb 1143 cm−1 above the Nb ground state. These energy differences are small compared to the 15158 cm−1 difference between the ground and first excited state of Ca, which is the last element before V with no d electrons.
As an example, consider the carbon electron structure: 1s22s22p2. After removing full subshells, there are 2 electrons in a p-level (), so there are
different states.
which, using the familiar labels , and , can be written as
The square brackets enclose the anti-symmetric square. Hence the 2p2 configuration has components with the following symmetries:
The Pauli principle and the requirement for electrons to be described by anti-symmetric wavefunctions imply that only the following combinations of spatial and spin symmetry are allowed:
Then one can move to step five in the procedure above, applying Hund's rules.
The group theory method can be carried out for other such configurations, like 3d2, using the general formula
The symmetric square will give rise to singlets (such as 1S, 1D, & 1G), while the anti-symmetric square gives rise to triplets (such as 3P & 3F).
More generally, one can use
where, since the product is not a square, it is not split into symmetric and anti-symmetric parts. Where two electrons come from inequivalent orbitals, both a singlet and a triplet are allowed in each case.
In Racah notation, states of excited atoms are denoted as . Quantities with a subscript 1 are for the parent ion, and are principal and orbital quantum numbers for the excited electron, K and J are quantum numbers for and where and are orbital angular momentum and spin for the excited electron respectively. “ o” represents a parity of excited atom. For an inert (noble) gas atom, usual excited states are where N = 2, 3, 4, 5, 6 for Ne, Ar, Kr, Xe, Rn, respectively in order. Since the parent ion can only be 2P1/2 or 2P3/2, the notation can be shortened to or , where means the parent ion is in 2P3/2 while is for the parent ion in 2P1/2 state.
Paschen notation is a somewhat odd notation; it is an old notation made to attempt to fit an emission spectrum of neon to a hydrogen-like theory. It has a rather simple structure to indicate energy levels of an excited atom. The energy levels are denoted as . is just an orbital quantum number of the excited electron. is written in a way that 1s for , 2p for , 2s for , 3p for , 3s for , etc. Rules of writing from the lowest electronic configuration of the excited electron are: (1) is written first, (2) is consecutively written from 1 and the relation of (like a relation between and ) is kept. is an attempt to describe electronic configuration of the excited electron in a way of describing electronic configuration of hydrogen atom. # is an additional number denoted to each energy level of given (there can be multiple energy levels of given electronic configuration, denoted by the term symbol). # denotes each level in order, for example, # = 10 is for a lower energy level than # = 9 level and # = 1 is for the highest level in a given . An example of Paschen notation is below.
Term symbols with LS coupling
L = 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... (continued alphabetically)There is no official convention for naming orbital angular momentum values greater than 20 (symbol ) but they are rarely needed. Some authors use Greek letters (α, β, γ, ...) after .
Terminology: terms, levels, and states
Term symbol parity
Ground state term symbol
↑
Atomic term symbols of the chemical elements
colspan="4" colspan="4"
Term symbols for an electron configuration
! colspan="3" align="center" style="border-right: 2px solid windowtext" all up ↑ ↑ 1 1 ↑ ↑ 0 1 ↑ ↑ −1 1 all down ↓ ↓ 1 −1 ↓ ↓ 0 −1 ↓ ↓ −1 −1 one up
one down↑↓ 2 0 ↑ ↓ 1 0 ↑ ↓ 0 0 ↓ ↑ 1 0 ↑↓ 0 0 ↑ ↓ −1 0 ↓ ↑ 0 0 ↓ ↑ −1 0 ↑↓ −2 0
! colspan="3" align="center" MS
| width="250px" |
{ cellspacing="0"
S = 0, L = 2, J = 2
1D2
! align="center" M S
| width="150px" |
S=1, L=1, J=2,1,0
3P2, 3P1, 3P0
! colspan="3" align="center" MS
|}
S=0, L=0, J=0
1S0
! align="center" MS
Case of three equivalent electrons
Alternative method using group theory
Summary of various coupling schemes and corresponding term symbols
LS coupling (Russell–Saunders coupling)
jj Coupling
J1L2 coupling
LS1 coupling
Most famous coupling schemes are introduced here but these schemes can be mixed to express the energy state of an atom. This summary is based on [2].
Racah notation and Paschen notation
1s22s22p6 Ground state Ne3s23p6 Ground state 1s22s22p53s1 1s Ne3s23p54s1 1s 1s22s22p53p1 2p Ne3s23p54p1 2p 1s22s22p54s1 2s Ne3s23p55s1 2s 1s22s22p54p1 3p Ne3s23p55p1 3p 1s22s22p55s1 3s Ne3s23p56s1 3s
See also
Notes
|
|